
Operations Research Letters 32 (2004) 523–529

Operations
Research
Letters

www.elsevier.com/locate/dsw

The combinatorics of pivoting for the maximum weight clique

Marco Locatellia ;∗;1, Immanuel M. Bomzeb, Marcello Pelilloc

aDipartimento di Informatica, Universit�a di Torino, Corso Svizzera 185, 10149 Torino, Italy
bInst. f!ur Statistik und Decision Support Systems, Universit!at Wien, Austria

cDipartimento di Informatica, Universit�a Ca’ Foscari di Venezia, Italy

Received 20 March 2003; accepted 9 February 2004

Abstract

In this paper we prove the equivalence between a pivoting-based heuristic (PBH) for the maximum weight clique problem
and a combinatorial greedy heuristic. It is also proved that PBH always returns a local solution although this is not always
guaranteed for Lemke’s method, on which PBH is based.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Maximum clique; Linear complementarity; Pivoting methods; Greedy heuristics; Combinatorial optimization

1. Introduction

Given an undirected graph, the maximum clique
problem (MCP) consists of 9nding a subset of pair-
wise adjacent vertices (i.e., a clique) having largest
cardinality. The problem is known to be NP-hard for
arbitrary graphs and so is the problem of approx-
imating it within a constant factor. A large set of
benchmark problems, the DIMACS ones, are avail-
able for MCP (see [5]). An important generalization
of the MCP arises when positive weights are associ-
ated to the vertices of the graph. In this case the prob-
lem is known as the maximum weight clique problem
(MWCP) and consists of 9nding a clique in the graph
which has largest total weight. More formally, let
G=(V; E; w) be an arbitrary undirected and weighted

∗ Corresponding author.
E-mail address: locatelli@di.unito.it (M. Locatelli).

1 Acknowledges support from Progetto FIRB “Ottimizzazione
Non Lineare su Larga Scala”.

graph, where V = {1; : : : ; n} is the vertex set, E is the
edge set and w∈Rn is the weight vector, the ith com-
ponent of which corresponds to the weight assigned to
vertex i. It is assumed that wi ¿ 0 for all i∈V . Given
a subset of vertices S, the weight assigned to S will
be denoted by

W (S) =
∑
i∈S

wi:

As usual, the sum over the empty index set is de9ned
to be zero. Then, problem MWCP is the following

max{W (S) : S is a clique}:
The MWCP has important applications in such 9elds
as computer vision, pattern recognition and robotics,
where weighted graphs are employed as a convenient
way of representing high-level pictorial information.
We refer to [1] for a recent review concerning algo-
rithms, applications and complexity issues of this im-
portant problem.
There are many reformulations of MCP and MWCP

as continuous global optimization problems (see again

0167-6377/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2004.02.005

mailto:locatelli@di.unito.it

524 M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529

[1] and references therein). In particular, a general-
ization of an earlier remarkable result by Motzkin and
Strauss shows that MWCP can be reformulated as
the problem of minimizing a quadratic function over
the unit simplex. Based on this reformulation, a new
pivoting-based heuristic (PBH) for the MWCP, based
on the corresponding linear complementarity problem
(LCP), has been proposed in the recent paper [7]. The
algorithm is essentially a variant of Lemke’s classi-
cal algorithm that incorporates an eIective look-ahead
pivot rule, and it proved to be among the most pow-
erful MWCP heuristics available in the literature (in
Section 2.1 both the quadratic programming reformu-
lation and the PBH will be brieJy recalled).
In this paper we provide some theoretical results

which prove a few conjectures that have been put for-
ward in [7] based on empirical observations. These
results allow for an interesting combinatorial interpre-
tation of the algorithm: PBH is essentially equivalent
to a greedy combinatorial heuristic.

2. The PBH and its combinatorial interpretation

2.1. The PBH heuristic

Given a weighted graph G=(V; E; w), consider the
following standard quadratic program (StQP):

minimize xT QGx

subject to x∈�; (1)

where the matrix QG = (qij)(i; j)∈V×V is de9ned as

qij =




1
2wi

if i = j;

0 if {i; j}∈E;
1
2wi

+
1

2wj
otherwise

(2)

and� denotes the standard simplex in the n-dimensional
Euclidean space Rn:

�=

{
x∈Rn :

∑
i∈V

xi = 1 and xi¿ 0 for all i∈V
}
:

Given a subset of vertices S ⊆ V , the weighted char-
acteristic vector of S, denoted by xS;w, is the vector

in � whose coordinates are given by

xS;wi =




wi
W (S)

if i∈ S;

0 otherwise:

The PBH heuristic is based upon the following result
(see [2]).

Theorem 1. Let G= (V; E; w) be an arbitrary graph
with positive weight vector w∈Rn. Then the follow-
ing assertions hold.

• A vector x∈� is a local solution to (1), i.e., yields
a local minimum, if and only if x = xS;w, where S
is a maximal clique of G.

• A vector x∈� is a global solution to (1), i.e., yields
a global minimum, if and only if x= xS;w, where S
is a maximum weight clique of G.

Moreover, all local solutions to (1) are strict, and
are characteristic vectors of maximal cliques of G.

It is well known that stationary points of quadratic
optimization problems with linear constraints, i.e. the
points which satisfy the 9rst order necessary con-
ditions for local optimality, can be characterized as
the solutions of a LCP, a class of inequality systems
for which a rich theory and a large number of algo-
rithms have been developed (see [4]). Hence, once the
MWCP is formulated in terms of an StQP, the use of
LCP algorithms naturally suggests itself, and this is
precisely the main idea proposed in [7].
Speci9cally, computing the stationary points of (1)

can be done by solving the LCP (qG;MG), which is
the problem of 9nding a vector x satisfying the system

y = qG +MG Mx¿ 0;

Mx = [x; xn+1; xn+2]¿ 0; MxTy = 0; (3)

where

qG =




0
...

0

−1
1




and MG =



QG - e e

eT 0 0

-eT 0 0


 ;

with QG as in (2) and e is the vector with all coor-
dinates equal to 1. With the above de9nitions, it is

M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529 525

well known that if Mx∈Rn+2 solves (3)—in which case
we say that z= [xT; yT]T is a complementary solution
of LCP (qG;MG)—then x is a stationary point of (1).
Note that QG is strictly Rn+-copositive, i.e.

xQGx¿ 0 for all x¿ 0 with x �= 0:

Hence so is MG, and this is suOcient to ensure that
LCP (qG;MG), or (3), always has a solution (see [4]).
Among the many LCP methods presented in the

literature, pivoting procedures are widely used and
within this class Lemke’s method is certainly the best
known, largely for its ability to provide a solution for
several matrix classes. Given the generic LCP (q;M),
this method considers the augmented problem LCPA
(q; d;M) de9ned by

y= q+ [M; d]

[
Mx

�

]
¿ 0; �¿ 0;

Mx¿ 0; MxTy = 0:

The vector d is called the covering vector, and must
satisfy di ¿ 0 whenever qi ¡ 0. Note that, if q¿ 0,
then (� = 0 and) Mx = 0; y = q promptly yields a so-
lution for LCP (q;M). Else, Lemke’s method starts
with the solution for LCPA (q; d;M) given by � =
max{−qi=di : qi ¡ 0}¿ 0; x=0 and y=q+�d. Then
it generates new solutions for LCPA (q; d;M) where
the value of � is progressively decreased (or, at least,
not increased) until a solution � ∗; Mx∗; y∗ with � ∗ = 0
is reached. Then Mx∗; y∗ is a solution for LCP (q;M).
We refer to [4] for a detailed description of Lemke’s
algorithm. In [7], d= e was chosen, and our problem
does not expose peculiarities that would justify a de-
viation from this common practice.
Unfortunately, like other pivoting schemes, the con-

vergence of Lemke’s algorithm is guaranteed only for
non-degenerate problems, and ours is indeed degen-
erate (here degeneracy is intended in the usual LP
sense). In [7], standard degeneracy resolution strate-
gies were tested over a number of benchmark graphs,
but the computational results obtained were rather dis-
couraging. The inherent degeneracy of the problem,
however, is bene9cial as it leaves freedom in choos-
ing the blocking variable (in Lemke’s method 9xing
the blocking variable also 9xes the next variable en-
tering the basis), and this property is exploited to de-
velop a variant of Lemke’s algorithm: the look-ahead

pivot rule which we will now shortly describe, for the
readers’ convenience.
As customary, we will use a superscript for the

problem data and, to simplify notation, subscripts in-
dicating the dependence on graph G will be omitted.
Hence, q� and M� will identify the situation after �
pivots and A� will indicate the leading principal n× n
submatrix of M�. Consistently, y� and x� will indicate
the vectors of basic and non-basic variables, respec-
tively, each made up of a combination of the original
xi and yi variables. The notation 〈x�i ; y�j 〉 will be used
to indicate pivoting transformations. The index set of
the basic variables that satisfy the min-ratio test at it-
eration � will be denoted by ��, i.e.

�� = argmini

{−q�i
m�is

: m�is ¡ 0
}
;

Algorithm 2.1. A reduced version of Lemke’s
Scheme I with the look-ahead rule, applied to
the MWCP.

Input: A graph G = (V; E; w) and h∈V .
Let �← 0. K ← ∅: x0p ← xh.
In9nite loop

Let x�p denote the driving variable.
�� = {i : m�ip ¡ 0}.
If �� ⊆ {h} stop: the result is K .
!� = argmini{|��| − |��+1

i |¿ 0 : i∈��}.
r =min!�

If y�r ≡ xi for some i, then K ← K \ {i}
If x�p ≡ xi for some i, then K ← K ∪ {i}
Perform 〈y�r〉x�p,
The new driving variable is the variable
complementary to y�r
(recall yi is the complementary variable to xi
and vice versa)
�← �+ 1

where s is the index of the driving column, i.e. the
column related to the next variable entering the basis.
The non-degeneracy assumption basically amounts to
having |��|=1 for all �, thereby excluding any cycling
behavior.
PBH uses the least-index rule, which amounts to

blocking the driving variable with a basic one that
has minimum index within a certain subset of ��, i.e.
r = min!� for some !� ⊆ ��. The set !� is chosen

526 M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529

in order to make the number of degenerate variables
decrease as slowly as possible, i.e. among the index
set

!� = argmin
i
{|��| − |��+1

i |¿ 0 : i∈��} ⊆ ��;

where ��+1
i is the index set of those variables that

would satisfy the min-ratio test at iteration �+1 if the
driving variable at iteration � were blocked with y�i
as i∈��. The previous condition implies that a pivot
step is taken and then reset in a sort of look-ahead
fashion, hence we refer to this rule as the look-ahead
(pivot) rule. The resulting procedure is speci9ed as
Algorithm 2.1. Empirical evidence indicated h, the in-
dex of the 9rst driving variable, as a key parameter
for the quality of the 9nal result of Algorithm 2.1. Un-
fortunately no eIective means could be identi9ed to
restrict the choice of vertices in V that can guarantee
a good sub-optimal solution, so one has to consider it-
erating for most, if not all, vertices of V as outlined in
Algorithm 2.2, which is the PBH. A simple criterion
avoids considering those nodes h∈V for which Al-
gorithm 2.1 with input node h is certainly not able to
produce a better clique with respect to the best known
one, because the weight of h and that of its neighbor-
hood is too small. Unfortunately, this criterion is eIec-
tive only for very sparse graphs. It has been observed
that the schema is sensitive to the ordering of nodes.
The best 9gures were obtained by reordering G by

Algorithm 2.2. The PBH for the MWCP.

Input: A graph G = (V; E; w).
Let G′ = (V ′; E′; w′) be a permutation of G
such that (4) holds.
K∗ ← ∅.
For v′ = 1; : : : ; n : W ({v′} ∪ Nv′)¿W (K∗) do

Run Algorithm 2.1 with G′ and v′ as input.
Let K be the obtained result.
If W (K)¿W (K∗), then K∗ ← K .

The result is the mapping of K∗ in G.

decreasing weight of each node and its neighborhood,
i.e.

W ({u′} ∪ Nu′)¿W ({v′} ∪ Nv′) for all

u′; v′ ∈V ′ : u′¡v′; (4)

where

Nj = {k ∈V : (k; j)∈E}
is the set of all neighbors of vertex j.

2.2. A combinatorial multistart greedy heuristic

Given an input h∈V , the following greedy heuristic
for MWCP returns a maximal clique.
GH (h)

Step 1 : Set p= h and K = ∅.
Step 2 : If K ∪ {p} is a maximal clique, then set

K =K ∪{p} and return K ; otherwise go to
Step 3.

Step 3 : Let

M0(K ∪ {p})
=arg max

j∈C0(K∪{p})
W (C0(K ∪ {p}) ∩ Nj);

where

C0(K ∪ {p})
={j∈V : (j; k)∈E for all k ∈K ∪ {p}}

=
⋂

k∈K∪{p}
Nk

is the set of all vertices inG adjacent to each
vertex in the current clique K ∪ {p}. Then,
select, according to the least-index rule, a
vertex ‘∈M0(K ∪ {p}).

Step 4 : Set K = K ∪ {p} and p= ‘ and go back
to Step 2.

Basically, at each iteration GH adds to the current
clique K ∪ {p} the least-index vertex in set M0(K ∪
{p}), i.e. within the subset of the vertices connected
to each vertex in the current clique (the set C0(K ∪
{p})) with maximum weight of the intersection of
their neighbor set with C0(K ∪ {p}). The following
multistart greedy heuristic (MGH) for MWCP, after
reordering the vertices of the graph in such a way that
(4) holds, simply runs GH for each h∈V .
MGH

Step 1 : Given a weighted graph G = (V; E; w), let
G′=(V ′; E′; w′) be a permutation of G such
that (4) holds. Let Q=V ′. Set K∗=∅; h=0
and max = 0.

M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529 527

Step 2 : If h6 n, go to Step 3; otherwise, return
max and K∗.

Step 3 : Run GH(h) and letKh be the returned max-
imal clique. If |Kh|¿max, set max = |Kh|
and K∗ = Kh. Set h= h+ 1 and go back to
Step 2.

We underline here that in the unweighted case, MCP,
if the least-index rule for the selection of vertex ‘ in
Step 3 of GH is substituted by a random choice, then
MGH corresponds to heuristic SM 1 belonging to the
class of heuristics SMi presented in [3].
In the following subsection we will prove that PBH

and MGH are equivalent, i.e. they always return the
same solution.

2.3. Equivalence between PBH and MGH

In order to prove the equivalence between PBH and
MGH we 9rst need to introduce some notation and
two lemmas.
Given a set S ⊆ V of vertices, abbreviate by Si =

S \ Ni the vertices in S that are not adjacent to i, and
denote by

d̃S(i) =
∑
j∈Si

(
1 +

wj
wi

)
; i∈V \ S

twice the average of weighted and unweighted
co-degree of i w.r.t. S. Note that if Si �= ∅, then
d̃S(i)¿ 1. Further, for i �= j we have (1=2wj)d̃{j}(i)=
qij as de9ned in (2).
Let us represent the relevant part of the tableau at

iteration � of Algorithm 2.1 in Table 1, where xp de-
notes the driving variable. Notice that, without loss
of generality, the vertices of the graph can always be
renumbered in such a way that the variables which en-
tered the basis up to iteration � are those correspond-
ing to vertices 1 up to p − 1; these variables entered
the basis in the same order of the vertices (i.e. x1 9rst,
then x2, and so on); the driving variable xp is the one
corresponding to vertex p; the relative order of the
indices of all other variables is left unchanged. Note
that each entry a�i; j of the tableau corresponds to the
following couple of variables:

(xi−1; xj) for i = 1; : : : ; p and

j = p; : : : ; n;

(yi; xj) for i = p+ 1; : : : ; n and

j = p; : : : ; n;

(xi−1; yj+1) for i = 1; : : : ; p and

j = 1; : : : ; p− 1;

(yi; yj+1) for i = p+ 1; : : : ; n and

j = 1; : : : ; p− 1;

where x0 ≡ xn+1.
Given the situation displayed in the tableau of

Table 1 we are now able to present the following
lemmas, whose technical proofs are given in [6].

Lemma 1. At iteration � of Algorithm 2.1, let xp
be the driving variable and K = {i∈V : xi is
basic}={1; : : : ; p − 1}. Then, the following state-
ments are true:

1: For all i �∈ K ∪ {p}

a�i;p =
1

2wp

[
d̃K∪{p}(i)− 1

]
;

which can be negative only if a�i;p=− 1
2wp

, i.e. when
K∪{p}\Ni=∅ or, equivalently, vertex i is adjacent
to any vertex in K ∪ {p}.

2: For all i �∈ K ∪ {p} such that a�i;p ¡ 0 (or equiv-
alently, in view of point 1., a�i;p = − 1

2wp
), it holds

that

a�i; i =
1
2wi

:

3: For all i �∈ K∪{p} such that a�i;p ¡ 0, it holds that

a�s; i =
1
2wi

d̃{i}(s) = qis for all s �∈ K ∪ {i; p}:

Proof. See the proof of Proposition 2.2 in [6].

Lemma 2. At iteration � of Algorithm, 2.1 let xp be
the driving variable and K = {i∈V : xi is basic }=
{1; : : : ; p − 1}. Then, the following statements are
true:

1: For any j∈K
a�j+1;p =

wj
wp
:

528 M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529

Table 1
Tableau at iteration � of Algorithm 2.1

q y2 : : : yp xp : : : xn y1 xn+2 yn+1

xn+1 1 a�1;1 a�1;p−1 a�1;p a�1;n
x1 0 a�2;1 a�2;p−1 a�2;p a�2;n
...

...
xp−1 0 a�p;1 a�p;p−1 a�p;p a�p;n
yp+1 0 a�p+1;1 a�p+1;p−1 a�p+1;p a�p+1;n
...

...
yn 0 a�n;1 a�n;p−1 a�n;p a�n;n
� 1
yn+2 2

2; If a�t;p ¡ 0; t �= 1, then

for all j∈K we have a�j+1; t = 0:

3: If a�t;p ¡ 0; t �= 1; then a�1; t = a11; t =−1:

4: a�1;p =
1

2wp

[
1− 2W (K ∪ {p})] :

Proof. See the proof of Proposition 2.3 in [6].

Now we are ready to prove the equivalence between
PBH and MGH.

Theorem 2. PBH and MGH always return the same
solution.

Proof. Notice that both PBH and MGH are multistart
algorithms that run a subroutine (Algorithm 2.1 for
PBH and GH for MGH) for each h∈V . Therefore,
in order to prove their equivalence it suOces to prove
that, given the same input h∈V , Algorithm 2.1 and
GH return the same maximal clique.
First we observe that, as conjectured in [7], in Algo-

rithm 2.1 once a xi variable with i∈V enters the basis,
it never exits. This follows from point 1 of Lemma 2
where each entry a�j+1;p in the column of the driv-
ing variable and related to a variable xj in the basis
is equal to wj=wp¿ 0 so that xj cannot exit the ba-
sis. This fact allows to establish an equivalence be-
tween the set K containing the indices of all variables
xi within the current basis in Algorithm 2.1, and the
clique K in GH: in both cases once a vertex/variable

enters the clique/basis, i.e. it enters set K , it will never
be removed from this set.
Next, we notice that in Algorithm 2.1 the set ��

of candidates to become the new driving variable, i.e.
with a�i;p ¡ 0, are only the variables related to vertices
i which form a clique with the vertices inK∪{p}. This
follows from point 1 of Lemma 1 from which a�i;p ¡ 0
if and only if [K ∪{p}]i=∅ which exactly means that
i is connected with every vertex in K ∪ {p}. In other
words, �� ≡ C0(K ∪ {p}), i.e. for a given set K and
vertex p, the set of candidates to enter the basis/clique
in Algorithm 2.1 and GH is the same. Note that the
above result also shows that in Algorithm 2.1 the set
K is always a clique.
But we can also extend this result. Indeed, it is im-

mediate to see that also the equivalence !� ≡ M0(K ∪
{p}) holds. Since both Algorithm 2.1 and GH employ
the least-index rule and in both cases the vertices are
ordered according to (4), when the set K and the ver-
tex p are the same for the two algorithms, they select
the same vertex ‘.
Finally, since we have assumed that the input h∈V

is the same for Algorithm 2.1 and GH, an easy induc-
tive proof shows that at each iteration these two al-
gorithms always select the same vertex and they will
9nally return the same maximal clique. Hence the as-
sertion is proved.

In [7] it was also conjectured that saddle points de-
tected by Algorithm 2.1 are always maximal cliques,
and thus local solutions, even if problem (1) has sta-
tionary points which are not local solutions. The above

M. Locatelli et al. / Operations Research Letters 32 (2004) 523–529 529

proof shows that the conjecture is true, as stated in the
following corollary.

Corollary 1. For any starting driving variable xh, Al-
gorithm 2.1 returns a local solution of problem (1).

References

[1] I.M. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo, The
maximum clique problem, in: D.-Z. Du, P.M. Pardalos, (Eds.),
Handbook of Combinatorial Optimization—Suppl, Vol. A,
Kluwer Academic Publishers, Dordrecht, 1999, pp. 1–74.

[2] I.M. Bomze, M. Pelillo, V. Stix, Approximating the maximum
weight clique using replicator dynamics, IEEE Trans. Neural
Networks 11 (2000) 1228–1241.

[3] M. Brockington, J.C. Culberson, CamouJaging independent
sets in quasi-random graphs, in: D. Johnson, M.A. Trick (Eds.),
Cliques, Coloring and Satis9ability, DIMACS Series, Vol. 26,
AMS, Providence, RI, 1996, pp.75–88.

[4] R.W. Cottle, J. Pang, R.E. Stone, The Linear Complementarity
Problem, Academic Press, Boston, MA, 1992.

[5] D. Johnson, M.A. Trick, (Eds.), Cliques, Coloring and
Satis9ability: Second DIMACS Implementation Challenge,
DIMACS Series, Vol. 26, AMS, Providence, RI, 1996.

[6] M.Locatelli, I.M. Bomze, M. Pelillo, Swaps, diversi9cation
and the combinatorics of pivoting for the maximum
weight clique, Technical Report CS-2002-12, Dipartimento
di Informatica, UniversitVa Ca’ Foscari di Venezia, 30172
Venezia Mestre (VE), Italy, also available at the web site
http://www.di.unito.it/∼locatell/combpivot6.ps 2002.

[7] A. Massaro, M. Pelillo, I.M. Bomze, A complementary
pivoting approach to the maximum weight clique problem,
SIAM J. Optim. 12 (2002) 928–948.

http://www.di.unito.it/~locatell/combpivot6.ps

	The combinatorics of pivoting for the maximum weight clique
	Introduction
	The PBH and its combinatorial interpretation
	The PBH heuristic
	A combinatorial multistart greedy heuristic
	Equivalence between PBH and MGH

	References

